Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields
نویسندگان
چکیده
منابع مشابه
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملDeep Convolutional Neural Networks for pedestrian detection
Pedestrian detection is a popular research topic due to its paramount importance for a number of applications, especially in the fields of automotive, surveillance and robotics. Despite the significant improvements, pedestrian detection is still an open challenge that calls for more and more accurate algorithms. In the last few years, deep learning and in particular convolutional neural network...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملImage Colorization with Deep Convolutional Neural Networks
We present a convolutional-neural-network-based system that faithfully colorizes black and white photographic images without direct human assistance. We explore various network architectures, objectives, color spaces, and problem formulations. The final classification-based model we build generates colorized images that are significantly more aesthetically-pleasing than those created by the bas...
متن کاملImage-based Plant Species Identification with Deep Convolutional Neural Networks
This paper presents deep learning techniques for image-based plant identification at very large scale. State-of-the-art Deep Convolutional Neural Networks (DCNNs) are fine-tuned to classify 10,000 species. To improve identification performance several models trained on different datasets with multiple image dimensions and aspect ratios are ensembled. Various data augmentation techniques have be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant Methods
سال: 2020
ISSN: 1746-4811
DOI: 10.1186/s13007-020-00570-z